This file has been cleaned of potential threats.

If you confirm that the file is coming from a trusted source, you can send the following SHA-256 hash value to your admin for the original file.

8cba08e0082c8e945c863ba7834b2cfeff6ec85b40a261331e58f1df455b9545

To view the reconstructed contents, please SCROLL DOWN to next page.

Comunicado 15 Técnico ISSN 0102-099 Dezembro, 2005. Boa Vista. RR

Bioecologia do caimbé [*Curatella americana* L. (Dilleniaceae)] ~ II : Estudos fenológicos

Reinaldo Imbrozio Barbosa 1

Moisés Mourão Jr. 2

Giliola Maria Lima Casadio ³

Silvio José Reis da Silva 4

Introdução

Os estudos fenológicos são definidos como a avaliação dos aspectos temporais dos eventos biológicos repetitivos, suas possíveis causas ambientais e a interrelação destes eventos com recursos disponíveis e competidores. Deste modo, as respostas obtidas em estudos desta natureza visam definir a viabilidade das espécies constituintes das fitocenoses e as pressões de seleção a que estas estão sujeitas (Pires-O'Brien e O'Brien, 1995).

A espécie *Curatella americana* L. (caimbé) é considerada como uma espécie fogoclímax sendo uma das mais abundantes nas áreas de savana aberta de Roraima, no extremo norte da Amazônia brasileira.

Juntamente com as espécies *Byrsonima* crassifolia e *Byrsonima* coccolobifolia somam mais de 90% da biomassa total (arbórea + herbácea) acima do solo (Barbosa e Fearnside, 2004).

Deste modo, vista a importância da espécie na fitofisionomia das savanas abertas, o presente trabalho apresenta os padrões fenológicos para a espécie, visando inferir quanto as estratégias desta em processos sucessionais.

Material e Métodos

Foram avaliados 50 espécimes, durante o período de dezembro de 2001 a dezembro de 2003, distribuídos em duas áreas experimentais situadas próximas da cidade

⁴ Pesquisador ~ FEMACT/MIRR, Parque Anauá 2868, 69300-000 Boa Vista – Roraima, silviorr@technet.com.br

¹ Pesquisador ~ Instituto Nacional de Pesquisas da Amazônia [INPA-RR]. Rua Coronel Pinto, 315. Centro. 69.300-000. Boa Vista - Roraima, reinaldo@inpa.gov.br

² Pesquisador ~ Embrapa Roraima. BR 174, km 08. Distrito Industrial. Caixa Postal: 133. 69.301-970. Boa Vista - Roraima, mmourao@cpafrr.embrapa.br

Pesquisadora ~ FEMACT/MIRR, Parque Anauá 2868, 69300-000 Boa Vista – Roraima.

2 Bioecologia do caimbé [Curatella americana L. (Dilleniaceae)] ~ II : Estudos fenológicos

de Boa Vista (Monte Cristo e Caranã). As avaliações foram quinzenais, sendo observadas as fenofases relacionadas a (i) dinâmica foliar, a saber: (i.a) queda foliar e (i.b) troca foliar e relacionadas a (ii) reprodução, a saber: (ii.a) surgimento de botão floral, (ii.b) floração e (ii.c) frutificação.

Foi utilizada a abordagem do índice de atividade (Bencke e Morelatto, 2002) definida como a assinalação da presença ou ausência da fenofase em um dado intervalo de tempo, sendo esta qualitativa em uma escala individual e quantitativa em uma escala populacional.

Todos os espécimes tiveram as medidas do diâmetro da base, altura total e diâmetro da copa tomadas, a fim de verificar as possíveis alterações entre as coortes da população de *Curatella americana*.

Como indicador de condição climática foi utilizada a precipitação pluvial mensal, cujos valores de precipitação durante o período de avaliação da população são apresentados na Tabela 1.

Séries temporais discretas de cada uma das respostas fenológicas foram construídas, considerando-se o dia juliano em que as avaliações foram conduzidas. Partindo-se do pressuposto de que séries temporais e medidas repetidas no tempo sempre trazem um certo grau de autocorrelação, devido a presença de sazonalidade, estas foram verificadas por

meio do teste de aleatoriedade de Durbin-Watson (D-W) e correlação serial (Diggle, 1991).

Tabela 1 Valores mensais de precipitação (mm.mês⁻¹) da cidade de Boa Vista para o período avaliado. Fonte: (INMET, 2004)

Meses	2001	2002	2003	Média
Janeiro	0	4	1	1,4
Fevereiro	1	3	6	3,1
Março	4	28	9	13,5
Abril	55	171	127	117,5
Maio	249	312	365	308,5
Junho	215	522	240	325,8
Julho	167	262	407	278,6
Agosto	329	180	212	240,2
Setembro	116	46	170	110,6
Outubro	64	0	61	41,5
Novembro	44	30	29	34,2
Dezembro	84	42	22	48,9
Total	1325	1596	1649	1523,7

No caso de determinação da presença de sazonalidade, a associação entre os eventos fenológicos e a precipitação pluviométrica foi determinada por meio do uso do modelo linear geral.

Uma medida de assincronia (δ_a), definida como a diferença entre o valor médio de ocorrência do início da fenofase e o valor de ocorrência do início da fenofase em cada indivíduo da população, expresso em dias julianos, foi obtida, a fim de relacionar o ritmo de ocorrência das fenofases com a estrutura diamétrica das população.

As análises foram conduzidas com o auxílio da planilha eletrônica Excel e do pacote estatístico STATISTICA 5.5.

Resultados

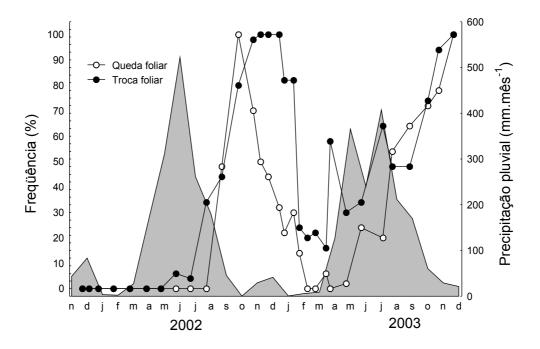
Dinâmica foliar

Tanto a queda, quanto a troca foliares apresentaram sazonalidade, indicada pela estatística de Durbin-Watson e pela correlação serial (Tabela 2).

Tabela 2 Valores da estatística de Durbin-Watson e correlação serial dos eventos fenológicos avaliados durante o período

	Estatística de	Correlação	
	Durbin-Watson	serial	
	(d)		
Queda	0,723	0,657	*
foliar			
Troca foliar	0,746	0,630	*
Botão floral	0,554	0,674	*
Floração	0,654	0,664	*
Frutificação	0,378	0,840	*

Onde: * - autocorrelação significativa


Os eventos fenológicos relacionados à dinâmica foliar (queda e troca foliar) apresentaram-se praticamente concomitantes, sendo que ambos tiveram maior expressão no período de menor precipitação pluvial (Fig.1).

A queda foliar, no primeiro ano (1.596mm.ano⁻¹), teve início no mês de

setembro (1,5mm.dia⁻¹) estendendo-se até o mês de janeiro do outro ano (0,03mm.dia⁻¹), sendo que todos os indivíduos da população amostrada foram assinalados nesta fenofase no mês de outubro (0,01mm.dia⁻¹). No segundo ano (1.649mm.ano⁻¹), a queda foliar teve início no mês de junho (8,0mm.dia⁻¹), sendo que no mês de dezembro (0,7mm.dia⁻¹) todos os indivíduos desta população apresentaram-se nesta fenofase (Fig.1).

O início das trocas foliares, no primeiro ano, foi observado no mês de agosto (6,0mm.dia⁻¹) e estendeu-se até o mês de abril (4,2mm.dia⁻¹) do outro ano. O período de mais intensa troca foliar foi observado nos meses de novembro (1,0mm.dia⁻¹) e dezembro (1,4mm.dia⁻¹), em que todos os indivíduos da população renovavam o dossel (Fig.1). Não foi observado um final de ciclo com a presente amostragem, entretanto a partir da série infere-se sobre um término do ciclo entre os meses de janeiro e fevereiro.

4 Bioecologia do caimbé [Curatella americana L. (Dilleniaceae)] ~ II : Estudos fenológicos

Fig. 1 Fenograma dos indivíduos de *Curatella americana* nas fenofases queda e troca foliar e precipitação pluvial mensal observada no período

A fenofase queda foliar apresentou uma duração de 54,6±23,0 dias (I.C._(95%)= 48-61 dias; máximo=113 dias) enquanto que a fenofase troca foliar apresentou duração maior, com valor médio de 78,9±23,1 dias (I.C._(95%)= 72-85 dias; máximo=135 dias).

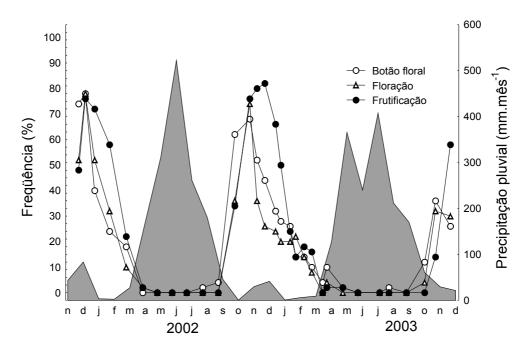
Dinâmica reprodutiva

Todas as fenofases reprodutivas (surgimento de botão floral, floração e frutificação) apresentaram sazonalidade indicada pela estatística de Durbin-Watson e pela correlação serial (Tabela 2).

As fenofases associadas à reprodução da espécie também apresentaram-se praticamente concomitantes, expressandose, também, no período de menor precipitação pluvial (Fig. 2).

O aparecimento de botões florais, no primeiro ano, teve início no mês de outubro (0,4mm.dia⁻¹) estendendo-se até o mês de março do outro ano (0,3mm.dia⁻¹), a maior freqüência de indivíduos nesta fenofase foi observada entre os meses de outubro e novembro (0,01; 0,9mm.dia⁻¹, respectivamente), com expressão de 62-68% dos indivíduos apresentando surgimento de botão floral.

No segundo ano, o surgimento de botão floral também ocorreu no mês de outubro (0,01mm.dia⁻¹) e a maior freqüência foi observada nos meses de novembro e dezembro (0,9; 1,3mm.dia⁻¹, respectivamente), com expressão de 36 e 26% dos indivíduos apresentando surgimento de botão floral (Fig. 2).


A floração, no primeiro ano, teve início no mês de outubro (0,4mm.dia-1) estendendose até o mês de abril do outro ano (4,1mm.dia-1), a maior freqüência de indivíduos nesta fenofase foi observada no início do mês de novembro (0,9mm.dia-1), com 74% dos indivíduos da população em floração.

No segundo ano, a floração também teve início no mês de outubro (1,9mm.dia-1) e a maior freqüência foi observada nos meses de novembro e dezembro (0,9; 0,7mm.dia-1, respectivamente), com uma freqüência reduzida de 32 e 30% dos indivíduos apresentando floração (Fig. 2).

A frutificação, no primeiro ano, teve início no mês de outubro (0,4mm.dia⁻¹)

estendendo-se até o mês de março do outro ano (0,3mm.dia⁻¹), a maior freqüência de indivíduos nesta fenofase foi observada entre os meses de novembro e dezembro (0,9; 1,3mm.dia⁻¹, respectivamente), com 76-82% dos indivíduos da população apresentando frutificação. Frutificações episódicas foram observadas nos meses de abril e maio do outro ano (4,1; 11,8mm.dia⁻¹, respectivamente), mas com pequena expressão (menor do que 2%).

No segundo ano, a frutificação também teve início no mês de novembro (1,9mm.dia⁻¹) e a maior freqüência foi observada no mês de dezembro (0,7mm.dia⁻¹), com freqüência de 58% dos indivíduos em floração (Fig.2).

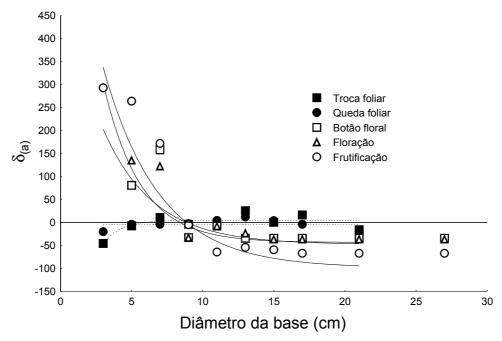
Fig. 1 Fenograma dos indivíduos de *Curatella americana* nas fenofases reprodutivas: surgimento de botão floral, floração e frutificação e valores de precipitação pluvial mensal observada no período

A fenofase botão floral apresentou uma duração de 45,3±32,5 dias (I.C._(95%)= 36-54 dias; máximo=128 dias), num intervalo equivalente a fenofase floração que apresentou uma duração de 42,8±32,7 dias (I.C._(95%)= 34-52 dias; máximo=120 dias). Já a fenofase frutificação apresentou uma duração maior, dentre as fenofases reprodutivas, com uma duração de 60,9±33,9 dias (I.C._(95%)= 51-70 dias; máximo=120 dias).

A associação entre as fenofases e o regime de precipitação pluvial, assinalou todas as fenofases como tendo associação negativa, entretanto, somente no caso das fenofases reprodutivas esta associação foi significativa (p<0,01) (Tabela).

Tabela 3 Matriz de correlação de Spearman, entre a freqüência de indivíduos nas fenofases e o regime de precipitação pluvial (n=24).

Fenofase	r _s	t(N-2)
Queda foliar	-0,174	-0,830 n.s.
Troca foliar	-0,165	-0,786 n.s.
Botão floral	-0,609	-3,600 **
Floração	-0,624	-3,747 **
Frutificação	-0,586	-3,393 **


Onde: n.s. – não significativo (p≥0,40); * -=altamente significativo (p<0,01).

As fenofases relacionadas à dinâmica foliar apresentaram uma menor assincronia tendo estabilidade em todas as coortes consideradas (Fig.3).

Entretanto, as fenofases associadas a reprodução apresentaram uma maior

assincronia, em que os indivíduos mais jovens (tomando-se o diâmetro da base como um indicador cronológico) apresentaram uma tendência de expressão da fenofase mais tardia, num limiar de estabilidade a partir dos 10cm de diâmetro da base (Fig.3).

7 Bioecologia do caimbé [Curatella americana L. (Dilleniaceae)] ~ II : Estudos fenológicos

Fig. 3 Valores médios de assincronia, em função das classes de diâmetro da base dos indivíduos da população de *Curatella americana*

Referências bibliográficas

BARBOSA, R. I.; FEARNSIDE, P.M. Wood density of trees in open savannas of the Brazilian Amazon. *Forest Ecology and Management*. v. 199 p. 115-123, 2004.

BENCKE, C. S. C.; MORELATTO, P. C. Comparação de dois métodos de avaliação da fenologia de plantas, sua interpretação e representação. *Revista Brasileira de Biologia*. v. 25 n.3 p.269-275, 2002.

DIGGLE, P. J. Time series: A biostatistical approach. New York: Oxford University

Press, 1991. 257p. (Oxford Statistical Science Series, 5)

INMET. Série temporal da precipitação pluviométrica em Boa Vista/Roraima para o período de janeiro/2001 a dezembro/2003. Manaus: Instituto Nacional de Meteorologia, 2004. Relatório digital fornecido pelo INMET/Manaus.

PIRES-O'BRIEN, M. J.; O'BRIEN, C. M. *Ecologia e Modelamento de Florestas Tropicais*. Belém: Faculdade de Ciências

Agrárias do Pará, 1995. 400p.

Exemplares desta edição podem ser adquiridos na:
Embrapa Roraima
Rodovia Br-174, km 8 - Distrito Industrial
Telefax: (95) 3626 71 25
Cx. Postal 133 - CEP. 69.301-970
Boa Vista - Roraima- Brasil
sac@cpafrr.embrapa.br
1ª edição
1ª impressão (2004): 100

Comitê de
Publicações

Presidente: Roberto Dantas de Medeiros
Secretário-Executivo: Amaury Burlamaqui Bendahan
Membros: Alberto Luiz Marsaro Júnior
Bernardo de Almeida Halfeld Vieira
Ramayana Menezes Braga
Aloísio Alcântara Vilarinho
Helio Tonini

Expediente Editoração Eletrônica: Vera Lúcia Alvarenga Rosendo